Two Dimensional Zonoids and Chebyshev Measures
نویسندگان
چکیده
We give an alternative proof to the well known fact that each convex compact centrally symmetric subset of R2 containing the origin is a zonoid, i.e., the range of a two dimensional vector measure, and we prove that a two dimensional zonoid whose boundary contains the origin is strictly convex if and only if it is the range of a Chebyshev measure. We give a condition under which a two dimensional vector measure admits a decomposition as the difference of two Chebyshev measures, a necessary condition on the density function for the strict convexity of the range of a measure and a characterization of two dimensional Chebyshev measures. Q 1997 Academic Press
منابع مشابه
Algorithms for bivariate zonoid depth
Zonoid depth is a new notion of data depth proposed by Dy-ckerhoff et al [DKM96]. We give efficient algorithms for solving several zonoid depth problems for 2-dimensional (bi-variate) data. Data depth measures how deep or central a given point 0 in 1 3 2 is relative to a given data cloud or a probability distribution in 1 4 2. Some examples of data depth are halfspace, simplicial, convex hull p...
متن کاملConstructing Two-Dimensional Multi-Wavelet for Solving Two-Dimensional Fredholm Integral Equations
In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subs...
متن کاملOn Zonoids Whose Polars Are Zonoids
Zonoids whose polars are zonoids, cannot have proper faces other than vertices or facets. However, there exist non–smooth zonoids whose polars are zonoids. Examples in R and R are given.
متن کاملMultivariate Lorenz dominance based on zonoids∗
The classical Lorenz curve visualizes and measures the disparity of items which are characterized by a single variable: The more the curve bends, the more scatter the data. Recently a general approach has been proposed and investigated that measures the disparity of multidimensioned items regardless of their dimension. This paper surveys various generalizations of Lorenz curve and Lorenz domina...
متن کاملNumerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets
In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two ben...
متن کامل